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Abstract

Hypoxia is characterized as a decrease oxygen
levels in tissue, represents a fundamental
pathophysiological condition in the microenvironment
of solid tumors. The key component of hypoxia
sensing in the cell is the hypoxia-inducible factor
(HIF), a transcriptional activator that mediates
adaptive responses to hypoxia. HIF is a heterodimer
comprising an oxygen-regulated a-subunit (HIF-1ct)
and a constitutively expressed B-subunit (HIF-1p).
HIF-1 activity increases in the majority of human
cancers and acts as a master transcription factor that
has received the most intense attention in the field of
cancer biology. The stability and activity of HIF-1 are
regulated by its post-translational modifications
such as hydroxylation, ubiquitination, acetylation,
and phosphorylation. HIF-I induces a series of genes
that participate in angiogenesis, iron metabolism,
glucose metabolism, and cell proliferation/survival.
Some novel agents have been shown to be targeted
HIF-1 through a variety of molecular mechanisms
and could represent a novel approach to cancer
therapy.

Keywords: Hypoxia-Inducible Factor-1; Cancer
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Introduction

Oxygen is essential for eukaryotic life and is
inextricably linked to the evolution of multicellular
organisms. Hypoxia is characterized by decreased
oxygen supply to the tissues as resultant cells are
not able to carry out normal metabolic functions
sufficiently. Several investigators define hypoxia
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as areas with O, tensions (pO, values) < 2.5 mm Hg
[1]. Hypoxia represents a fundamental
pathophysiological  condition in  the
microenvironment of solid tumors. Solid tumors
comprise approximately 90% of all known cancers
and develop from a single mutated cell [2] and it is
very common in locally advanced solid tumors
resulting from an imbalance between oxygen (O,)
supply and consumption [3]. Major causative
factors of tumor hypoxia are abnormal structure
and function of the microvessels supplying to the
tumor, increased diffusion distances between the
blood vessels and the tumor cells, and reduced O,
transport capacity of the blood [3]. The process of
tumor progression (proliferation, local invasion,
and distant metastasis) is characterized by rapid
cellular growth accompanied by alterations of the
microenvironment of the tumor cells [4]. Protection
against hypoxia in solid tumors is an important
step in tumor development and progression [5].

Hypoxia induces the expression of transcription
factor hypoxia-inducible factor-1 (HIF-1), a key
regulator responsible for the induction of genes that
facilitate adaptation, and survival of cells and the
whole organism from normoxia (~21% O,) to
hypoxia (~1% O,) [6,7]. Hypoxia inducible factors
(HIFs) are a group of heterodimeric transcription
factors that regulate transcription of thousand
genes in response to hypoxia [8].

HIF activation results in up-regulation of
erythropoietin, angiogenic factors, activation of
glycolytic enzymes to carry out anaerobic
metabolism and even a mitochondrial hibernation
like phenomenon resulting in decreased oxygen
demand [9,10]. Although, the identification of HIF
was done in 3 decades ago, but our knowledge has
grown exponentially about the mechanism of the
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HIF-1 pathway and its role in cancer progression.
Therefore, this review will focus on hypoxia/HIF-
1 regulated target genes related to metabolic
regulation, tumor progression, invasion, and
metastasis and further elucidate the implication of
HIF-1 as a potential therapeutic target.

Historical Perspective

More than 90 years ago Krogh’s [11] classical
morphometric studies revealed that angiogenesis was
related to some form of metabolic regulation which
was maintained by muscle capillary density and the
metabolic rate of different species. Intervention
studies indicated that alteration of metabolic demand
can change the capillary density. Later, it was
observed that immobilization can reduce the muscle
capillary density; whereas continuous neural
stimulation can increase muscle capillary density
[12,13]. Earlier studies had shown that damage of the
capillaries at the wound site generates a hypoxic
environment and starts restorative angiogenic
response [14] in presence various factors like platelet-
derived growth factor [15], vascular endothelial
growth factor (VEGF) [16,17]. It had also indicated
that circulating erythropoietin increases several
hundred folds within hours of hypoxic stimulation.
Subsequent studies established that expression of
erythropoietin and angiogenic growth factors are
mediated by a hypoxia induced transcriptional
complex, HIF-1 [18,19]. HIF-1 was discovered by the
identification of a hypoxia response element in the 3’
enhancer of the gene for erythropoietin (EPO) [20,21].
Development of a tumor arising from the increasing
metabolic demands of the growing cell mass creates
a severely hypoxic microenvironment [22]. Hypoxia
inducible factor-1 (HIF-1) is a key regulator
responsible for the induction of genes that facilitate
adaptation and survival of cells in hypoxic
condition [7].

Hypoxia Inducible Factors (HIFs)

There are three different types of HIF namely
HIF-1, HIF-2, HIF-3. All HIFs are made up of one
alpha-subunit and one beta-subunit. Researchers
found that HIF-2a and HIF-3a are selectively
expressed in certain tissues, including vascular
endothelial cells, type-II pneumocytes, renal
interstitial cells, liver parenchymal cells and cells
of the myeloid lineage; however, HIF-1a
ubiquitously expressed in all cells [23]. The
adequate oxygen supply to the micro-environment
of cells promotes oxygen dependent proteosomal
degradation of HIF-1a; whereas, hypoxia prevents

proteosomal degradation, rather HIF-la is
stabilized with HIF-18 and form a dimer. This
heterodimer is ultimately translocated into nucleus,
binds to HRE (hypoxia responsive element), starts
expression of target genes such as EPO, GLUT,
glycolytic enzymes, haemoxygenase-1, inducible
nitric oxide synthase (iNOS), transferrin, VEGF
[4,9,10,24].

HIF-2a (also known as endothelial PAS protein-
1, EPAS-1) has been associated with pluripotential
cells [25] which facilitates oxygen delivery and
cellular adaptation to hypoxia by stimulating
erythropoiesis, angiogenesis, and anaerobic glucose
metabolism [26] and also elicits response to increase
synthesis of epidermal growth factor receptor
(EGFR) protein that is required for tumor cell
growth autonomy [27].

HIF-3 is homologous to HIF-1; it is expressed
abundantly in lung epithelial cells in moderate
hypoxic condition and may therefore contribute to
protection during early intervals of hypoxia and/or
moderate hypoxia, while, HIF-1a and HIF-20. may
confer protection against severe and/or prolonged
hypoxia [28].

Hypoxia and HIF-1

Hypoxic condition has two approaches, i) chronic
that exerts anti-proliferative effects and induces
apoptosis and necrosis, ii) acute which promotes
aggressive phenotype of tumor and induces their
invasiveness and metastasis. Dai et al [29]. reported
that when PC-3 cells and prostate cancer cell lines
were exposed to chronic hypoxia (1% oxygen for
>24hrs), decreased cell proliferation and induce cell
death. However, the prostate cancer cells exposed to
acute hypoxia (<6hrs) displayed increased motility,
clonogenic survival and invasive capacity. The up-
regulation of HIF-1 is considered as the molecular
“switch” or “event” that is turned on by hypoxia.
However, stimulation of cells with a variety of growth
factors and cytokines, including EGF, FGF-2,
heregulin, insulin, IGF-1, IGF-2 and IL-1B also induces
the expression of HIF-1a protein [30]. The growth
factor mediated expression of HIF-1 was mediated by
PI-3 Kinase and MAP-Kinase pathway [31]. During
hypoxia, HIF-1 plays a central role as a transcription
factor, upregulates the expression of many genes
involved in cell metabolism, proliferation, apoptosis,
and angiogenesis [32,33].

Biochemical Structure of HIF-1

HIF-1a is an 826-amino acid protein and contains
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Fig. 1: Schematic representation of structure of the HIF-1 protein and its functional domains. The protein consists of
basic helix-loop-helix (hHLH) and PER-ARNT-SIM (PAS) domain, oxygen-dependent degradation (ODD) domain, two
transacting domains (TAD), an inhibitor domain (ID), and a nuclear localization signal (NLS). P402, 564, N803 are the
hydroxylation site and K532 is the acetylation site. P- proline, N- asparagine, K- lysine [83]

several domains (Fig.1). The N-terminal half
consists of i) basic domain (aa. 17-30), ii) a helix-
loop-helix domain (aa. 31-71), iii) a PAS (PER-
ARNT-SIM) domain (aa. 85-298), which is required
for dimerization with HIF-1B and binding to the
HRE DNA core recognition sequence (5'-RCGTG-
3"). The PAS domain is also divided into two sub-
domains i) PAS-A (aa.85-158) and ii) PAS-B (aa.
228-298) [6]. The C-terminal half of HIF-1 contains
transactivation domains (TADs). They are present
in between amino acids 531-575 (N-terminal TAD)
and amino acids 786-826 (C-terminal TAD); these
are separated by an inhibitory domain [34,35].
There are two Nuclear localization signals (NLSs)
in HIF-1 i) N-terminal (aa.17-74) and ii) C-terminal
(aa. 718-721) [36]. The C-terminal NLS is essential
for nuclear import of HIF-land it contains two
PEST-like motifs at amino acids 499-518 and 581-
600 [6]. The PEST motif contains a sequence rich in
proline (P), glutamic acid (E), serine (S), and
threonine (T) [10]. Basically, HIF-1 is a very unstable
protein with a short half-life less than 10 min under
normoxic conditions because in this state it is
ubiquitinized, and then targeted by the proteasome
[37]. The oxygen-dependent degradation of HIF-1
in normoxic condition is mediated by oxygen-
dependent degradation (ODD) domain which is
present at amino acids 401-603 before N-terminal
TAD [38].

Regulation of HIF-1 Activity

HIF-1 is a uniquely identified protein, associated
with the transcription of the hypoxia-inducible genes.
Wang et al [6]. stated that all the dimeric HIFs
including HIF-1 belong to a family of structurally
related basic helix-loop-helix-Per-ARNT-Sim
(bHLH-PAS) protein. Subsequent studies have
revealed that heterodimeric HIF-1 consists of HIF-1a.
and HIF-1B [32,39,40]. Hypoxia induces the

expression of HIF-1a subunit; whereas HIF-1p is a
constitutively expressed subunit in cell [6]. Basically,
HIF-1B had previously been identified as the aryl
hydrocarbon nuclear receptor translocator (ARNT),
which is dimerized with the aryl hydrocarbon
receptor [41]. HIF-1a has four functional domains:
bHLH, PAS, ODD, TAD (N-TAD and C-TAD)
[40,42] and HIF-1p contains 3 domains: bHLH,
PAS, and transactivation domain (N-TAD and C-
TAD) [43]. In normoxic condition (21% oxygen
level) HIF-1a. protein is rapidly and continuously
expressed and degraded. HIF-lo protein
degradation is controlled by ODD domain (Fig. 2)
and deletion of entire ODD region renders HIF-1a
stable even in the absence of hypoxia signaling [38].
Hydroxylation of proline residue at 402 and 564
within the ODD domain of HIF-la mediates it’s
interaction with the von Hippel-Lindau tumor
suppressor protein (pVHL), which is recognized as
a component of an E3 ubiquitin ligase, leading to
ubiquitination of HIF-1a protein and subsequently
degraded in 265 proteosome. These proline residues
are embedded within the amino acid motif
LXXLAP, which is conserved in the HIF-1 proteins
of other species and HIF-2 [10]. The hydroxylation
process is governed by three evolutionary
conserved HIF prolyl hydoxylase (PHD1-3) [44].
PHD-1 and PHD-2 hydroxylate 402 and 564 proline
residues whereas, PHD-3 hydroxylates only 564
proline residue [9]. All three PHDs contain ferrous
iron (Fe) in their active site and L-ascorbate acts
as cofactor during hydroxylation [45]. However,
hydroxylation reaction is coupled with the
conversion of 2-oxoglutarate (2-OG) into succinate.
Actually after hydroxylation, the enzymes are
inactivated (Fe®* state) and to carry further
hydroxylation reaction, the enzymes must have to
be activated; the latter is governed by L-ascorbate
that donates electron to Fe®* center of PHDs
[42,44,46,47].
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Fig. 2: Represent the regulation of HIF-14 in normoxic and hypoxic conditions. HIF-14 contains two proline residues (P402 at N-
terminal, P564 at C-terminal of O,-dependent degradation domain) and asparagine (N803) at C-terminal end. The oxygen
dependent prolyl and asparaginyl hydroxylation of HIF-14 are the target point for its stability. P402 and P564 are hydroxylated

by the prolyl hydroxylase domain (PHD) enzymes (PHD3 can only hydroxylate P564),

and N803 by factor inhibiting HIF (FIH)

in presence of O,, 2-OG, and cofactors (Fe*” and L-ascorbate). Acetylation of lysine (K532) is done by ARD and favours the
interaction of HIF-14 with VHL. In normoxic condition, hydroxylated HIF-14 is recognized by the von Hippel-Lindau tumor
suppressor (pVHL) E3 ubiquitin ligase complex, leading to degradation of HIF-1 in 26S proteasome. Hydroxylated N803 blocks
the recruitment of transcriptional coactivator CBP/p300. Hypoxia mediated inhibition of prolyl hydroxylation is sufficient to

allow HIF-1a to escape from pVHL E3-dependent proteolytic destruction and form an

active transcriptional complex with HIF-

a (lower right). Nonhydroxylated N803 of HIF-1_ allows CBP/p300 recruitment to the target genes, resulting in various gene

expressions. [P - proline, N - arparagine, K-lysine] [9, 42,83]
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Under hypoxic conditions, prolyl hydroxylation
within the ODD domain is inhibited and the
interaction of HIF-1a with PVHL is also prevented;
the result is blocking of ubiquitination and
degradation of HIF-1o and subsequent amplification
of this protein (Figure 2). The accumulated HIF-1a
translocates to the nucleus where it dimerizes with
HIF-1B via the bHLH and part of the PAS domain
to form the HIF-1 complex [32]. HIF-1 recruits
transcriptional co-activators such as P300/CBP and
binds with the hypoxia response element (HRE)
within the promoter region of HIF-1 responsive target
genes, including IGF-2, VEGF, TGF-a, MDR-1,
transglutaminase2, hexokinase (HK) 1 and 2,
Phosphofructokinase L (PFKL) and so on [24,48-50].
Hypoxia-response element (HRE) contain the cis-
acting element 5-RCGTG-3" (R=purine; mostly
adenine) in their core of HRE [51]. Functionally active
HREs had been identified in the promoter region of
more than hundred mammalian genes involved in
erythropoiesis, glycolysis, angiogenesis,
carcinogenesis, and other biological activities [50,52].
The transcriptional activity of HIF-1 is negatively
regulated by an asparagine hydroxylase, also known
as FIH (factor inhibiting HIF-1) which is able to
interact with pVHL and modulates the stabilization
of HIF-1a. In normoxia, hydroxylation of an
asparagine residue (N803) in the transactivation
domain (C-TAD) of HIF-1a blocks its association with
the co-activators CBP and p300 [53-55].

HIF-1 Mediated Gene Expression and Metabolic
Control

Recently, a large-scale microarray technique
revealed that HIF-1 activates hundreds of target genes
[56] and it facilitates the survivality of cells in the
tumor microenvironment in hypoxic condition. HIF-
1 regulates expression of genes for cell proliferation
(IGF-2, WAF-1, TGF-a etc), survival (ADM, EPO,
VEGF, NOS2, etc), motility (AMF/GPI, c-MET, LRP-
1, TGF-a), apoptosis (NIX, NIP-3, RTP801),
cytoskeletal structure (KRT14, VIM, KRT18), cell
adhesion (MIC2), erythropoiesis (Epo), angiogenesis
(ENG, LEP, VEGF, TGF-B3), vascular tone (ADM,
NOS-2, heme oxygenase-1), nucleotide metabolism
(adenylate kinase), iron metabolism (transferrin,
ceruloplasmin), glucose metabolism (HK-1, GLUT-
1, ENO-1, AMF/GP]I, PFK-1), amino acid metabolism
(transglutaminase-2), energy metabolism (LEP) and
soon [52].

The metabolism of cancer cells is profoundly
different from that of normal cells: Cancer cells
manifest an increased rate of glycolysis coupled with
a decreased rate of oxidative metabolism. Cancer cells,

especially metastatic cells show high glucose
uptake and anaerobic glycolysis. The universality
of this finding was demonstrated by using "F-
fluorodeoxyglucose PET scanning (FDGPET) [57].
Tumor cells are able to survive in hypoxic condition
with the help of HIF-1 which alters the metabolic
processes, primarily carbohydrate metabolism
(glucose uptake, anaerobic glycolysis, glycogen
metabolism, pentose phosphate pathway) and also
lipid metabolism. It was observed that HIF-1 induced
the expression of genes of specific glucose
transporters for initial glucose internalization, and
monocarboxylic acid transporters to promote lactate
efflux. HIF-1 dependent transcription is strikingly
isoform or isoenzyme specific. For instance, hypoxia
up-regulates lactate dehydrogenase A (LDH-A) and
monocarboxylic transporter 4 for conversion of
pyruvate to lactate and lactate efflux from the cell, but
down-regulates monocarboxylate transporter 1 and
LDH B which act to promote lactate uptake and
conversion of lactate into pyruvate [58].

Glycolytic Pathway

Glycolytic pathway is the prime metabolic route
for glucose utilization, energy production and
integration of metabolism; three enzymes, namely
phosphofructokinase-1 (PFK-1), pyruvate kinase (PK)
and hexokinase (HK) regulate the pathway. The prime
regulatory enzyme PFK-1 exists as 3 isoforms (PFK-L,
PFK-P, and PFK-M) which differ in their sensitivity to
ATP and Krebs cycle intermediate citrate. The
principal isoform PFK-L, least sensitive to inhibitors
is up-regulated by HIF-1 but its activity remains
allosterically controlled by fructose-2,6-bisphosphate
that promotes PFK tetramer formation and increases
catalytic activity. Interestingly, the expression of
enzyme that catalyzes the formation of fructose-2,6-
bisphosphate is also controlled by HIF-1 [59,60].

The second regulatory enzyme pyruvate kinase
catalyzes the terminal step of glycolysis and able to
alter the metabolic fate of glucose: either to maximize
ATP generation or to slow down the process;
resulting, accumulation of glycolytic intermediates
for biosynthetic pathways. HIF-1 induces
transcription of PKM (pyruvate kinase isoform M)
gene in cancer cells, specifically a less active
embryonic form PKM-2 instead of normal form the of
pyruvate kinase (PKM-1) through alternative splicing
[61]. The switch to PKM-2 also facilitates the catalysis
of PEP dependent histidine phosphorylation of
upstream enzyme Phosphoglycerate mutase (PGAM-
1), which increases the activity of PGAM-1 and is
again proposed to redirect glycolytic flux away from
ATP synthesis and into the production of biosynthetic
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intermediates [62]. However, contradictory results
had also been found in xenograft tumor models
[63,64]; PKM-2 isoform specific deletion enhances
tumerogenesis in mice [65]. Recent report had
proposed the non-glycolytic role of PKM-2 in
transcriptional co-activation of HIF-1a through
specific interaction with the HIF system [61]. The
isoenzyme specific targeting by HIF-1 in the
glycolytic pathway strongly suggests that HIF
contributes to up-regulate parallel pathways of
glycolysis in cancer to overcome the action of tumor
suppression genes [9].

Glycogen Metabolism

Dysregulation of glycogen metabolism appears
with glycolysis and enzymes catalyzing multiple
steps in glycogen biosynthesis have been identified
as HIF-1 target genes, including phosphoglu-
comutase-1, UDP-glucose phosphorylase 2, glycogen
synthase and glucan, branching enzyme-1 Actually,
hypoxia induced energy storage appears paradoxical
and itis an adaptive response for the future threat of
energy starvation. This response does indeed survival
during adverse growth condition [66,67]. However,
glycogenolytic enzyme glycogen phosphorylase
(PYGL) is also induced by hypoxia, but over a longer
time scale than the synthetic enzymes [68].

Lipid Metabolism

Increase in lipid biosynthesis and also glycogen
accumulation are the common feature of cancer cells;
for instance, both of these were familiar in renal
carcinoma cells. Up-regulation of FAS (fatty acid
synthase) correlates strongly with aggressive
malignancy and inhibition of FAS rapidly inhibits
cancer cell proliferation, including cell cycle arrest
and apoptosis [69]. Hypoxia promotes many
synthetic pathways as well as cellular lipid uptake
and interactions between lipid and hypoxia signaling
pathways occur at multiple levels. Actually, this lipid
synthesis potentially provides a resource for the
production of new membrane and lipid signaling
molecules that are important for cell proliferation
[70,71]. Experimentally, it was observed that tissue
culture in hypoxic condition promotes the induction
of both the cytosolic form of Acetyl-CoA-synthetase
and FAS gene [72].

Mitochondrial Activity

HIF down-regulates mitochondrial oxidative
phosphorylation through a range of actions on
mitochondrial metabolism and biosynthesis. Pyruvate

dehydrogenase complex (PDH), is the key
regulatory enzyme for TCA cycle. The activity of
this enzyme is regulated by covalent modification;
phosphorylation and dephosphorylation of the
PDH are regulated by pyruvate dehydrogenase
kinase (PDK) isoforms 1-4 and pyruvate
dehydrogenase phosphatase (PDP) isoforms 1-2
respectively. HIF-1 dependent induction of PDK-1
leads to PDH inhibition, disconnecting the TCA
cycle from glycolysis [73,74].

Mitochondrial function can also be attenuated
by the HIF-dependent down-regulation of several
components of electron transport chain including
Complex-I, Succinate dehydrogenase (Complex II),
Cytochrome c-oxidase (COX). The activity of complex-
I is inhibited by HIF-1-dependent activation of NADH
dehydrogenase ubiquinone 1 alpha sub-complex
4-like 2, NDUA4L2 [75]. Succinate dehydrogenase
(SDH) complex (SDHA, B, C and D) is down regulated
by HIF-1 dependent reduction in SDHB protein levels
through a post-transcriptional mechanism [76].
Cytochrome c oxidase (COX), the last enzyme in the
electron transport chain has two HIF-dependent
regulatory subunits: COX4-2 is a HIF transcriptional
target and is up-regulated in hypoxia; whereas the
COX4-1 subunit is down-regulated through an indirect
mechanism by activating the HIF-dependent
mitochondrial LON protease that degrades COX4-1[77].

HIF-dependent transcriptional activation of the
microRNA miR-210 down-regulates multiple targets,
important for mitochondrial functions including
NDUFA4, SDH, the iron-sulfur cluster assembly
proteins ISCU1/2 and the COX assembly protein
COX10 [78,79]. Studies with pVHL-defective renal
carcinoma cell line RCC4 had revealed that HIF can
exert negative regulation on c-MYC and lowers
mitochondrial biogenesis and mitochondrial mass
[80]. In addition, the HIF-1 target gene BNIP-3
contributes to reduced mitochondrial number by
activating mitochondrial autophagy [81].

HIF and Cancer Progression

HIF-1a over expression has been demonstrated in
the majority of human cancers [24,82]. Immuno-
histochemical analyses of patient’s biopsy samples
have shown that HIF-1 is over expressed in many
tumor types including pancreatic, head and neck,
oropharyngeal, breast, renal, ovarian, urothelial,
bladder brain colorectal and prostate. Several studies
had shown that there is a strong correlation between
HIF-1 over expression and tumor progression with
an increased aggressiveness, angiogenesis and
metastasis [83]. There were several mechanisms to
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Table 1: Represent the alteration of gene expression that enhances the activity of HIF-1

Alteration in tumor Mechanism of HIF 1o induction References

VHL loss of function Decreased ubiquitylation 89
P53 loss of function Decreased ubiquitylation 90

PTEN loss of function Increased synthesis 86; 88

PIBK-AKT-mTOR signalling* Increased synthesis 91]; 86
MEK-ERK signalling* Increased synthesis 31
ERBB2 gain of function Increased synthesis 91
EGEFR signalling* Increased synthesis 86
IGFIR signalling* Increased synthesis 31

PGE2 signalling* Increased synthesis 92;93
AREF loss of function Increased synthesis 94
SRC gain of function Decreased nucleolar sequestration 95
BCL2 overexpression Not determined 96

*Increased signalling could be due to genetic alteration in a component of the pathway or an upstream

activator.

promote the over expression and induction of HIF-
1 activity (Table-1). Tumor cells with constitutive
activation of the Ras-MAP-Kinase pathway, Src or
the PI3K-Akt (PKB) mTOR pathway have elevated
expression of HIF-1a protein [84-86]. HIF-1 activity
increases due to loss of function of tumor suppressor
proteins such as p53 and PTEN that promotes
constitutive activation of Akt [87,88].

HIF-1 and Angiogenesis

In a rapidly growing tumor, oxygen demand
increases and oxygen delivery decrease due to
insufficient blood flow and increasing diffusion
distance between the blood vessels and the oxygen
consuming cells [97]. These lead to hypoxia in
expanding tumor mass, triggering events that stimulate
angiogenesis in an effort to ameliorate the hypoxic
condition. One of the potent stimulator of proliferation
and migration of vascular endothelial cells
(angiogenesis) is VEGEF; production is induced by HIF-
1[4].

Vascular endothelial growth factor (VEGF) has
been shown to stimulate migration of macrophages
by activation of the VEGF-receptor (Flt-1) which
ultimately produces several angiogenic factors,
including VEGF and tumor necrosis factor alpha
TNF-a.[98,99] Beside these, HIF-1 induces the
expression of several angiogenesis-related gene
products and receptors, including PDGF-B, VEGF-
R-1, endothelin-1, inducible nitric oxide synthase
(iNOS), monocyte chemotactic factor, adrenomodulin
and EGF [100].

HIF-1 and Metastasis

Hypoxia is an important micro-environmental
factor that induces cancer metastasis. There are

different steps for conversion of a tumor cell to
become metastatic including epithelial-
mesenchymal transition (EMT), extracellular
matrix modulation, intravasation, circulation,
extravasation, homing at the premetastatic niche,
and organotropic colonization [101,102].

EMT is one of the crucial mechanisms to cause
early stage of tumor metastasis and the cells lose
E-cadherin, an epithelial marker. It has been
assumed that hypoxia may be an important factor
contributing to the loss of E-cadherin in solid
tumors [103]. HIF-1 shows metastatic effect by
regulating expression of several numbers of genes
that are categorized into different classes, including
transcription factors, histone/chromatin modifiers,
enzymes, receptors, kinases, small GTPases,
transporters, adhesion molecules, surface molecules,
membrane proteins, and microRNAs [104].

* Transcription Factor and Histone/Chromatin
Modifiers Associated to Metastasis

Transcription factor and histone/chromatin
modifiers have different roles in relation to
hypoxia-induced metastasis. The EMT regulators,
such as Twistl, Snail, Slug, ZEB1, ZEB2, and E12/
E47 have been shown to be either directly or
indirectly regulated by HIF-1a. These EMT
regulators subsequently bind to the promoters of
EMT marker genes, like E-cadherin, vimentin, and
N-cadherin to mediate EMT [105]. In addition to
transcriptional factors, chromatin modifiers could
also be regulated by hypoxia. Induction of histone
lysine-specific demethylase 4B (KDM4B, J]MJD2B)
correlates with invasion and advanced clinical
stage in colorectal cancers, gastric cancer and lung
metastasis and breast cancer [106-108].
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* Enzymes Related to Metastasis

The most significant enzymes that are regulated
by hypoxia to cause metastasis are metalloproteases
including matrix metalloprotease-1 (MMP1) and
MMP3 to induce metastasis [109], lysyl oxidase (LOX)
essential for collagen metabolism [110], angiotensin
converting enzyme (ACE) related to lung cancer [111],
Sulfatase 1 (Hsulf-1) modulates the sulfation state of
heparin sulfate proteoglycans [112].

* Receptors, Kinases, Small GTPases, and
Transporters Associated to Metastasis

Various receptors, receptor-activated kinases,
small GTPases, and transporters are regulated by
hypoxia/HIF-1a, play the significant role in cancer
metastasis. Chemokine receptor 4 (CXCR4) [113]
urokinase-type plasminogen activator receptor
(uPAR), Toll-like receptor 4 (TLR4) [114] RON
tyrosine kinase [115] are activated by HIF-1a, play
a crucial role for hypoxia-induced tumor cell
growth and metastasis. HIF-1a-regulated small
GTPases Cdc42 and Racl regulate nitric oxide-
induced macrophage migration and metastasis
[116]. Different transporters including glucose
transporter type 1 (GULT-1) and multidrug
resistance protein 1 (MDR1) are regulated by
hypoxia/HIF-1a and implicated in the metastatic
processes [117,118] . A truncated form of the
voltage-dependent anion channel 1 (VDACI) is
induced by HIF-1a to promote cancer cell survival
[119].

o Adhesion Molecules, Membrane Proteins, and
Various Proteins Involve in Metastasis

Different adhesion or surface molecules
including, angiopoietin-like 4 (ANGPTL4), L1 cell
adhesion molecule (L1CAM) and CD151
(tetraspanin family) are important for cell adhesion,
motility vascular metastasis [120,121]; membrane
proteins like CD24, CD147, Galectin-1, MUC1 (O-
glycoprotein membrane-bound mucin), Semaphorin
4D, Caveolin-1 are related to carcinogenesis in
various organs like colon, breast, lung and kidney
[122-127]; other proteins such as Liprin-a 4
(cytoplasmic protein) matricellular proteins
[CYR61 (CCN1) and NOV (CCNB3)], S100A4, CapG
are involved in migration and invasion of cancer
cells [128,129].

e MicroRNAs and Metastasis

A range of microRNAs (miRNAs) is shown to be
regulated by hypoxia/HIF-1a. Hypoxia/HIF-1a
mediated various microRNAs have a concise role in
metabolism, DNA damage response, and
angiogenesis [130]. The critical microRNA miR-210

involves in tumor initiation and metastasis
[131,132]. Hypoxia induces miR-15b/16, miR-21,
miR-372/373 and miR-103/107 to promote the
tumor progression and metastasis [133]. However,
hypoxia/HIF-a down regulates miR-34a and miR-
17/20a that target signaling pathway [134,135].

Hypoxia Induced Genomic Changes and Clonal
Selection

Hypoxia, with or without reoxygenation,
promotes genomic instability through point
mutations, gene amplification and chromosomal
rearrangement [136]. Point mutation may develop
in tumor cells exposed to hypoxia and
reoxygenation through several mechanisms,
including insufficient DNA repair, errors in DNA
replication or both [137,138]. Metabolic damage to
DNA bases may also play a role in point mutations,
since a hypoxia-reoxygenation sequence may cause
oxidative damage. Such damage has the potential
to lead various pyrimidine-purine-derived lesions
in DNA. The most abundant form of these effects
are generation of 8-hydroxyguanine, which
mispaired with adenine [139,140]; the ultimate
results are point mutations, chromosomal
rearrangements and gene amplification which
promote development of metastatic disease by
inactivation of metastasis suppressor gene or
increased expression of oncogenes involved in
angiogenesis and growth factors [4].

Hypoxia exerts a strong selection pressure on
malignant cells [4]. The proteomic or genomic
adaptive changes in malignant cells favor their
survivality under hypoxic conditions that lead to
advantageous for selection over non-adapted cells.
The progeny of the adapted cells will increase at a
greater rate than those of the non-adapted cells and
eventually will become the dominant cell
subpopulation within the tumor. The selected cells
show more favorable character, including
apoptotic insensitivity, invasion, metastasis
capability, aggressiveness, treatment resistance
and increased angiogenic potential which further
aggravates tumor hypoxia and establishes a vicious
circle of hypoxia and malignant progression in
advanced stage of disease [141].

Reynolds et al. [138] had discussed about pattern
of mutation frequency in hypoxically cultured cells;
the rate of mutation frequency continued to rise with
repeated exposure to hypoxia followed by
reoxygenation and starts impairment of cellular repair
capabilities [138]. The cycle of repeated hypoxia-
reoxygenation may function as a mutagenic force by
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increasing the levels of superoxides and other O,  VEGF) and finally promotes malignant progression
radicals [142]. However, hypoxia-reoxygenationcycle  [4].

increases ROS production, which activate stress
response genes, such as HSP-70 (an effective inhibitor
of apoptosis) or stress-response transcription factor,
such as NF-«f} (regulates numerous genes including

HIF-1a as a Therapeutic Target

The expression of HIF-1a occurs in the majority

Table 2: Represent the effects different agents that are responsible to decrease both level and activity of HIF-1a

Strategies Agents Mechanism Refs.
HIF-1a DNA binding Doxorubicin Inhibits cellular defensive 151
inhibition mechanisms and angiogenesis
HIF-1a mRNA expression EZN-2968 (RNA antagonist) Third generation oligonucleotide that 152
inhibition specifically binds and inhibits the
expression of HIF-la mRNA.
Aminoflavone (ligand of the aryl Disrupts HIF-1a mRNA expression. 153
hydrocarbon receptor)
HIF-1a protein degradation Gefitinib (EGFR tyrosine kinase Reduced protein stability withoutany 154
inhibitor) change in the level of HIF-la mRNA.
Inhibition of HIF-1a Topotecan (Hycamtin Topoisomerase-1 inhibitor 155
transcriptional activity Chetomin (dithiodiketopiperazine Inhibit transcription of HIF 156
metabolite of the fungus Chaetomium
species
1C50 Inhibit HIF-1a expression as well as 157
the phosphatidylinositol-3-
kinase/ Akt pathway
HSPI0 inhibitors, Geldanamycin and 17- Block the binding of HSP90 to HIF-1a. 158
allylaminogeldanamycin (17-AAG),
Inhibition of HIF-1a NSC-134754 Translation inhibitor 155
translational activity 103D5R Translation inhibitor 159
HIF-1a targeted SIRNA treatment Inhibition of HIF-1 activation 160
Inhibitors of signal Rapamycin Reduce mTOR activity and thereby 161
transduction pathways inhibit HIF-1a expression, HIF-1-
dependent VEGF expression, and
VEGF-driven angiogenesis.
Genistein (natural products) Receptor tyrosine kinases inhibitor 162
Calphostin C Inhibitor a protein kinase C 163
Wortmannin and L'Y294002 Inhibitors PI3K-AKT pathway
PD98095 Inhibitor of Ras-MAPK pathway
Diphenylene iodonium and A redox signaling blocker
Inhibition of dimerization Eolitetracycline (a semisynthetic Block HIF- 1o-HIF-1p dimerization 164
pyrrolidnomethyltetracycline) by targeting the PAS Domain and
inhibits formation of the HIF-1
complex (Ref.).
Cell-based (HRE reporter) Echinomycin Inhibits DNA binding 165
DJ12 DNA binding/ transactivation 166
Anthracycline chemotherapeutic DNA binding agent 151
Agents
Trichostatin A and FK228 [histone Inhibit HIF-1a induction and HIF-1 167
deacetylase (HDAC) inhibitors] activity
Pleurotin Thioredoxin redox system inhibitor 168
TAS106 (ECyd) RNA polymerase inhibitor 169
Protein-protein interaction Chetomin p300-HIF-1o interaction inhibitor 170
Rolitetracycline HIF-1o-HIF-1p (ARNT interaction 171; 164
inhibitor)
Others KRH102053 PHD?2 activator 172
HIF oligonucleotide decoy Binds to and inactivates HIF-1a 173
Digoxin Potent inhibitor of HIF-1a synthesis 174
RITA Inhibtors of p53-HDM?2 interaction 175
Prolyl-hydroxylase inhibitors (FG- Inhibtors of proline hydroxylation 176

2216 and FG-4592)

Indian Journal of Cancer Education and Research / Volume 6 Number 1 / January - June 2018



Saptadip Samanta, Barsha Dassarma, Subhajit Jana et al. / Hypoxia Inducible Factor-1 (HIF-1) and 103
Cancer Progression: A Comprehensive Review

of human cancers, plays a pivotal role in its
progression by making therapeutic resistance. The
low efficacy of several cytotoxic drugs, like
cyclophosphamide, carboplatin (ParaplatinR;
Bristol-Myers Squibb; Princeton, NJ), carmustine
(BiCNUR; Bristol-Myers Squibb), and melphalan
(AlkeranR; Celgene Corporation; Warren, NJ)
appears in hypoxia mediated tumorogenesis
[143,144]. Hypoxic cells are approximately three
fold more resistant than well-oxygenated cells
[145]. Hypoxia mediated therapeutic resistance
occurs through 1) direct effects due to lack of O,
which require to some drugs and radiation for
maximum cytotoxic effects; 2) indirect effects via
altered cellular metabolism that decreases drug
cytotoxicity, and; 3) enhanced genetic instability may
lead to more rapid development of drug resistant
tumor cells [146]. In respect to therapeutic resistance,
HIF-1 inhibitors can inhibit tumor growth and
angiogenesis [147],and may have therapeutic utility.
Several novel anti-cancer agents had been identified
to inhibit HIF-1 activity (Table -2) [82,148]. They
preferentially form cytotoxic and DNA-damaging free
radicals under hypoxia, thus selectively eradicating
hypoxic cells [149]. According to their putative
mechanism of action, HIF-1 inhibitors could be
tentatively divided into agents that modulate: 1) HIF-
1o. DNA binding; 2) HIF-1o0 mRNA expression; 3) HIF-
lo protein degradation; 4) HIF-1a transcriptional
activity; and 5) HIF-1o protein translation [150]. Beside
these, several other approaches are also being applied:
blocking of HIF-1a protein-protein interactions;
inhibition of signal transduction pathways; inhibition
of cell-based activity; blocking of dimerization [83].

Conclusion

Hypoxia is a common feature in growing tumor
and has an important mechanism of HIF-1 activation.
HIF-1 is a fundamental regulator of oxygen
homeostasis and to control the physiological and
pathological progression by targeting several genes
related to metabolism, angiogenesis, metastasis,
inhibition of apoptosis, inactivation of tumor
suppression. The activity of HIF-1 is tightly regulated
by hydroxylation of proline, asparagine and
proteosomal degradation which are determined by
cellular oxygen tension. The invention of HIF-1 has
increased interest in the development of therapies
against cancer cells in hypoxic microenvironment.
Finally, HIF-inhibitors combined with existing
treatments (radiotherapy and chemotherapy) will
open a new era in the development of therapeutic
strategies for the treatment of solid tumors.
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